Google Search

Google

Tuesday, September 11, 2007

The Networking World

Definition

Experts in the field of networking debate whether two computers that are connected together using some form of communications medium constitute a network. Therefore, some works state that a network requires three connected computers. One such source, "Telecommunications: Glossary of Telecommunication Terms" states that a computer network is "A network of data processing nodes that are interconnected for the purpose of data communication". The term "network" being defined in the same document as "An interconnection of three or more communicating entities".[1] A computer connected to a non-computing device (e.g., networked to a printer via an Ethernet link) may also represent a computer network, although this article does not address this configuration.

This article uses the definition which requires two or more computers to be connected together to form a network. [2] The same basic functions are generally present in this case as with larger numbers of connected computers. In order for a network to function, it must meet three basic requirements, it must provide connections, communications and services. Connections refers to the hardware, communications is the way in which the devices talk to each other, and services are the things which are shared with the rest of the network.[3]

[edit] Classification of computer networks

[edit] By network layer

Computer networks may be classified according to the network layer at which they operate according to some basic reference models that are considered to be standards in the industry such as the seven layer OSI reference model and the four layer Internet Protocol Suite model. In practice, the great majority of networks use the Internet Protocol (IP) as their network layer. Some networks, however, are using IP Version 6 IPv6, usually in coexistence with IPv4. IPv6 use is often experimental.

[edit] By scale

Computer networks may be classified according to the scale: Personal Area Network (PAN), Local Area Network, Campus Area Network, Metropolitan area network (MAN), or Wide area network (WAN). As Ethernet increasingly is the standard interface to networks, these distinctions are more important to the network administrator than the end user. Network administrators may have to tune the network, based on delay that derives from distance, to achieve the desired Quality of Service (QoS).

Controller Area Networks are a special niche, as in control of a vehicle's engine, a boat's electronics, or a set of factory robots.

[edit] By connection method

Computer networks may be classified according to the hardware technology that is used to connect the individual devices in the network such as Ethernet, Wireless LAN, HomePNA, or Power line communication.

[edit] By functional relationship

Computer networks may be classified according to the functional relationships which exist between the elements of the network, for example Active Networking, Client-server and Peer-to-peer (workgroup) architectures.

[edit] By network topology

Main article: Network Topology

Computer networks may be classified according to the network topology upon which the network is based, such as Bus network, Star network, Ring network, Mesh network, Star-bus network, Tree or Hierarchical topology network, etc.

Network Topology signifies the way in which intelligent devices in the network see their logical relations to one another. The use of the term "logical" here is significant. That is, network topology is independent of the "physical" layout of the network. Even if networked computers are physically placed in a linear arrangement, if they are connected via a hub, the network has a Star topology, rather than a Bus Topology. In this regard the visual and operational characteristics of a network are distinct.

[edit] By protocol

Computer networks may be classified according to the communications protocol that is being used on the network. See the articles on List of network protocol stacks and List of network protocols for more information.

[edit] Types of networks:

Below is a list of the most common types of computer networks in order of scale.

[edit] Personal Area Network (PAN)

Main article: Personal area network

A personal area network (PAN) is a computer network used for communication among computer devices (including telephones and personal digital assistants) close to one person. The devices may or may not belong to the person in question. The reach of a PAN is typically a few meters. PANs can be used for communication among the personal devices themselves (intrapersonal communication), or for connecting to a higher level network and the Internet (an uplink).

Personal area networks may be wired with computer buses such as USB and FireWire. A wireless personal area network (WPAN) can also be made possible with network technologies such as IrDA and Bluetooth.

[edit] Local Area Network (LAN)

Main article: Local Area Network

A network covering a small geographic area, like a home, office, or building. Current LANs are most likely to be based on Ethernet technology. The defining characteristics of LANs, in contrast to WANs (wide area networks), include their much higher data transfer rates, smaller geographic range, and lack of a need for leased telecommunication lines. Hosts can be made part of a specific LAN can be defined by setting their address to one within the address range of the LAN subnet This can be done by manual configuration, or by configuring DHCPDynamic Host Configuration Protocol autoconfiguration to give the host an address in the appropriate range.

Currently standardized LAN technologies operate at speeds up to 10 Gigabits/sec. IEEE has projects investigating the standardization of 100 Gigabits/second, and possibly 40 Gigabits/second. Inverse multiplexing is commonly used to build a faster aggregate from slower physical streams, such as bringing 4 Gigabits/second aggregate stream into a computer or network element with four 1 Gigabit/second interfaces.

[edit] Campus Area Network (CAN)

Main article: Campus Area Network

A network that connects two or more LANs but that is limited to a specific and contiguous geographical area such as a college campus, industrial complex, or a military base. A CAN, may be considered a type of MAN (metropolitan area network), but is generally limited to an area that is smaller than a typical MAN, so it is called a CAN.

This term is most often used to discuss the implementation of networks for a contiguous area. In the past, when layer 2 switching (i.e., bridging (networking) was cheaper than routing, campuses were good candidates for layer 2 networks, until they grew to very large size. Today, a campus may use a mixture of routing and bridging. The network elements used, called "campus switches", tend to be optimized to have many Ethernet interfaces rather than an arbitrary mixture of Ethernet and WAN interfaces.

[edit] Metropolitan Area Network (MAN)

Main article: Metropolitan Area Network

A network that connects two or more Local Area Networks or CAN together but does not extend beyond the boundaries of the immediate town, city, or metropolitan area. Multiple routers, switches & hubs are connected to create a MAN

[edit] Wide Area Network (WAN)

Main article: Wide Area Network

A WAN is a data communications network that covers a relatively broad geographic area (i.e. one country to another and one continent to another continent) and that often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.

The highest data rate commercially available, as a single bitstream, on WANs is 40 Gigabits/second, principally used between large service providers. Wavelength Division Multiplexing, however, can put multiple 10 or 40 GBps streams onto the same optical fiber.

[edit] Global Area Network (GAN)

Main article: Global Area Network

Global area networks (GAN) specifications are in development by several groups, and there is no common definition. In general, however, a GAN is a model for supporting mobile communications across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications is "handing off" the user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial Wireless local area networks (WLAN) is the [4]. INMARSAT has defined a satellite-based Broadband Global Area Network (BGAN).

IEEE mobility efforts focus on the data link layer and make assumptions about the media. Mobile IP is a network layer technique, developed by the IETF, which is independent of the media type and can run over different media while still keeping the connection.

[edit] Internetwork

Main article: Internetwork

Two or more networks or network segments connected using devices that operate at layer 3 (the 'network' layer) of the OSI Basic Reference Model, such as a router. Any interconnection among or between public, private, commercial, industrial, or governmental networks may also be defined as an internetwork.

In modern practice, the interconnected networks use the Internet Protocol. There are at least three variants of internetwork, depending on who administers and who participates in them:

  • Intranet
  • Extranet
  • "The" Internet

Intranets and extranets may or may not have connections to the Internet. If connected to the Internet, the intranet or extranet is normally protected from being accessed from the Internet without proper authorization. The Internet itself is not considered to be a part of the intranet or extranet, although the Internet may serve as a portal for access to portions of an extranet.

[edit] Intranet

Main article: Intranet

An intranet is a set of interconnected networks, using the Internet Protocol and uses IP-based tools such as web browsers, that is under the control of a single administrative entity. That administrative entity closes the intranet to the rest of the world, and allows only specific users. Most commonly, an intranet is the internal network of a company or other enterprise.

[edit] Extranet

Main article: Extranet

A extranet is network or internetwork that is limited in scope to a single organization or entity but which also has limited connections to the networks of one or more other usually, but not necessarily, trusted organizations or entities (e.g., a company's customers may be provided access to some part of its intranet thusly creating an extranet while at the same time the customers may not be considered 'trusted' from a security standpoint). Technically, an extranet may also be categorized as a CAN, MAN, WAN, or other type of network, although, by definition, an extranet cannot consist of a single LAN, because an extranet must have at least one connection with an outside network.

[edit] Internet, The

Main article: Internet

A specific internetwork, consisting of a worldwide interconnection of governmental, academic, public, and private networks based upon the Advanced Research Projects Agency Network (ARPANET) developed by ARPA of the U.S. Department of Defense – also home to the World Wide Web (WWW) and referred to as the 'Internet' with a capital 'I' to distinguish it from other generic internetworks.

Participants in the Internet, or their service providers, use IP Addresses obtained from address registries that control assignments. Service providers and large enterprises also exchange information on the reachability of their address ranges through the Border Gateway Protocol.

[edit] Basic Hardware Components

All networks are made up of basic hardware building blocks to interconnect network nodes, such as Network Interface Cards (NICs), Bridges, Hubs, Switches, and Routers. In addition, some method of connecting these building blocks is required, usually in the form of galvanic cable (most commonly Category 5 cable). Less common are microwave links (as in IEEE 802.11) or optical cable ("optical fiber").

[edit] Network Interface Cards

Main article: Network card

A network card, network adapter or NIC (network interface card) is a piece of computer hardware designed to allow computers to communicate over a computer network. It provides physical access to a networking medium and provides a low-level addressing system through the use of MAC addresses. It allows users to connect to each other either by using cables or wirelessly.

[edit] Repeaters

Main article: Repeater

A repeater is an electronic device that receives a signal and retransmits it at a higher level or higher power, or onto the other side of an obstruction, so that the signal can cover longer distances without degradation.

Because repeaters work with the actual physical signal, and do not attempt to interpret the data being transmitted, they operate on the Physical layer, the first layer of the OSI model.

[edit] Hubs

Main article: Network hub

A hub is a repeater with more than two ports, thus also being called "multiport repeater". It interconnects devices at the physical layer (layer 1) of the OSI model.. [5] It does this in a rudimentary way, it simply copies the data to all of the Nodes connected to the hub. Hubs are commonly used to connect segments of a LAN. A hub contains multiple ports. When a packet arrives at one port, it is copied the packets to all the ports of the hub. When the packets are copied, the destination address in the frame does not change to a broadcast address.

[edit] Bridges

Main article: Network bridge

A network bridge connects multiple network segments at the data link layer (layer 2) of the OSI model. Bridges do not promiscuously copy traffic to all ports, as does a hub. but learns which MAC addresses are reachable through specific ports. Once the bridge associates a port and an address, it will send traffic for that address only to that port. Bridges do send broadcasts to all ports except the one on which the broadcast was received.

Bridges learn the association of ports and addresses by examining the source address of frames that it sees on various ports. Once a frame arrives through a port, its source address is stored and the bridge assumes that MAC address is associated with that port. The first time that a previously unknown destination address is seen, the bridge will forward the frame to all ports other than the one on which the frame arrived.

Bridges come in three basic types:

  1. Local bridges: Directly connect local area networks (LANs)
  2. Remote bridges: Can be used to create a wide area network (WAN) link between LANs. Remote bridges, where the connecting link is slower than the end networks, largely have been replaced by routers.
  3. Wireless bridges: Can be used to join LANs or connect remote stations to LANs

[edit] Switches

Main article: Network switch

Switches are a marketing term that encompasses routers and bridges, as well as devices that may distribute traffic on load or by application content (e.g., a Web URL identifier). Switches may operate at one or more OSI layers, including physical, data link, network, or transport (i.e., end-to-end). A device that operates simultaneously at more than one of these layers is called a multilayer switch.

Overemphasizing the ill-defined term "switch" often leads to confusion when first trying to understand networking. Many experienced network designers and operators recommend starting with the logic of devices dealing with only one protocol level, not all of which are covered by OSI. Multilayer device selection is an advanced topic that may lead to selecting particular implementations, but multilayer switching is simply not a real-world design concept.

[edit] Routers

Main article: Router

Routers are the networking device that forwards data packets along networks by using headers and forwarding tables to determine the best path to forward the packets. Routers work at the network layer (layer 3) of the OSI model. Routers also provide interconnectivity between like and unlike media.[3] This is accomplished by examining the Header of a data packet.[5] They use routing protocols such as Open Shortest Path First (OSPF) to communicate with each other and configure the best route between any two hosts. A router is connected to at least two networks, commonly two LANs or WANs or a LAN and its ISP's network. Some DSL and Cable Modems have been integrated with routers for home consumers.

[edit] Building a simple computer network

A simple computer network may be constructed from two computers by adding a network adapter (Network Interface Controller (NIC)) to each computer and then connecting them together with a special cable called a crossover cable. This type of network is useful for transferring information between two computers that are not normally connected to each other by a permanent network connection or for basic home networking applications. Alternatively, a network between two computers can be established without dedicated extra hardware by using a standard connection such as the RS-232 serial port on both computers, connecting them to each other via a special crosslinked null modem cable.

Practical networks generally consist of more than two interconnected computers and generally require special devices in addition to the Network Interface Controller that each computer needs to be equipped with. Examples of some of these special devices are hubs, switches and routers.

No comments: